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Geometry effects in confined space
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In this paper we calculate some exact solutions of the grand partition functions for quantum gases in
confined space, such as ideal gases in two- and three-dimensional boxes, in tubes, in annular containers, on the
lateral surface of cylinders, and photon gases in three-dimensional boxes. Based on these exact solutions,
which, of course, contain the complete information about the system, we discuss the geometry effect which is
neglected in the calculation with the thermodynamic liMit>cc, and analyze the validity of the quantum
statistical method which can be used to calculate the geometry effect on ideal quantum gases confined in
two-dimensional irregular containers. We also calculate the grand partition function for phonon gases in
confined space. Finally, we discuss the geometry effects in realistic systems.
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[. INTRODUCTION ideal quantum gas confined in an irregular container, the den-
sity of states, after neglecting the topological contribution,
In statistical mechanics, for seeking the sum over all posean be written as

sible states, we always take the approximation that the vol-
ume of the system tends to infinity. In so doing we have lost 27m 1 (2mY2 1
all information about the geometry property of the system p(e)=S - —
because in such an approximation the spectrum of single-
particle states is continuous while the total number of states
is independent of the shape of the boundary and simply pronhere S is the area and. the perimeter of the container.
portional to the volume of the system. However, the properMoreover, for the case of a three-dimensional ideal quantum
ties of some systems found recently are shape dependent agds in a long tube, of which all transverse cross sections keep
sensitive to the topologll—3|. In Ref.[4], we developed a the same, the density of states is
method for calculating the effects of boundary and topology

2 4L h o (2

on ideal Bose and Fermi gases in confined space. (27rm)32 1 2mm
In the thermodynamic limit, one can replace the summa- ple)=L,S ————e?——L,L (3
tion over states by an integralis— [dep(e), where h®l'(3/2) 4 h?
5 di2 S andL here denote the area and perimeter of the transverse
p(s):\/( T 4ot (1) cross section of the tube, respectively, and the length of the
hiT'(d/2) tubel, is made sufficiently large so that tkecomponent of

the momentunp, can be considered to be continuous. The
second terms of Eq$2) and (3) describe the contributions
is the density of states of &dimensional gas of dispersion from the boundary.
E=p?/(2m). However, if the system is enclosed in a finite  In the present paper, for analyzing geometry effects, we
volume, the structure of the phase space will be changed. Iwill calculate some exact solutions for ideal gases and pho-
confined space, the spectrum of single-particle states willon gases in various kinds of confined space, and provide an
depend on the shape of the boundary. This is important if thapproximate result for phonon gases in confined space. By
thermal wavelength of particles is comparable to the size ofomparing these exact and approximate solutions with the
the container, that is to say, the replacement of the summaesult obtained in the thermodynamic limit—c, we can
tion with the integral with the density of states, K}, isa  extract the information about boundary shape and topology.
good approximation only when the volume is large enoughFurthermore, the validity of the method presented in R&f.
so that the particle can not feel the boundary. can be further justified by comparing it with these exact so-
For taking into account geometry effects, in the precedindutions.
paper{4] we proposed that for the case of a two-dimensional It can be found that the corrections to the standard results
which are on the ordex/L where\ is the thermal wave-
length and_ denotes the linear size of the system. At the end
*Email address: daiwusheng@tju.edu.cn of this paper, we will discuss such geometry effects in real-
TEmail address: xiemi@mail.tinu.edu.cn istic systems.
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In Sec. Il, we discuss the method which will be used inwhich will be used to discuss the phonon gas in confined
this paper for calculating geometry effects. In Sec. Ill, wespace.
calculate the exact solutions for ideal gases in two- In statistical mechanics, one always replaces the summa-
dimensional boxes and three-dimensional tubes and boxeson over states by an integral in the thermodynamic limit
By comparing Egs(2) and(3) with these exact solutions, we v« This treatment is equivalent to replacing the summa-
can see that the densities of states given by Ejsand(3)  tjon only by the integral on the right-hand side of E4). but
are very good approximations for discussing ideal gases ifeglecting the contribution from the rest terms. The informa-
confined space. Moreover, in this section, we also considgtyn apout the geometry of the system is contained in the

the geometry effect on the Fermi energy. In Sec. IV, Weg,mmation over states since the structure of the spectrum of

calculate the exact solutions for ideal gases in annular Cor]"noninter::lcting particles is determined by the system geom-
tainers. The result shows no boundary effects in such sys- ry. The geometry information, however, will be lost after

tems even the scales of the systems are very small. In Sec. ge replacement of the summation with the integral; in other
we calculate the exact solutions for photon gases in confine P . : egral,
ords, the integral in Eq(4) does not contain geometry

space, and compare the thermodynamic quantities with th¥ . ) ,
standard result of blackbody radiation. In Sec. VI, we calcunformation, that is to say, the rest terms in E4) corre-
late an approximate result for phonon gases in confine§Pond to geometry effects. _ _
space. Based on this result, we can analyze the boundary It is natural to expect that if there is no b_oun(_:iary, th(.are.ls
effect on the lattice specific heat. In Sec. VI, we analyze thé0 boundary effect at all. No boundary implies periodic
geometry effects in realistic systems and compare the influboundary conditions; in other words, there will be no bound-
ence of geometry effects with the influence of fluctuationsary effect if we apply periodic boundary conditions. For ex-
and interparticle interactions. The conclusions are summaample, we will show that there is no boundary effect in the
rized in Sec. VIII while some expressions of thermodynamicsystem of an ideal gas in an annular container.

quantities are given in the Appendix. The prerequisite for applying the Euler-MacLaurin for-
mula to solving the sum over states is that the energy spec-
Il. THE METHOD FOR CALCULATING trum of the system must be known. Whether one can obtain
GEOMETRY EFFECTS an exact solution or not depends on whether the series has a

For an exact study of statistical mechanics in Comcmed‘inite number of nonzero terms. If therg are infinitg nonzero
space, the geometry effect has to be reckoned in. To seek the- (k), one obtains only an approximate solution. In the
exact solution of a grand potential, we need to find a methodPllowing we will calculate some exact and approximate so-
to perform the summation over all possible states because tigtions for ideal gases, photon gases, and phonon gases in
energy spectrum is discrete in confined space. In the followconfined space.
ing we will solve the sum by using the Euler-MacLaurin

formula[S]: IIl. EXACT SOLUTIONS FOR IDEAL GASES

IN CONFINED SPACE

- w 1 1
z‘o F(m= fo Fmdn+ 5F(0) = 57B2F(0) In this section, we first calculate some exact solutions for

ideal gases in two- and three-dimensional confined space.
_ iB E"(0)+ - - - 4) Based on these exact solutions we then discuss the validity
4! ' of the approximate method provided in Rf4], which can
be used to calculate the geometry effect in the system with

whereB, are Bernoulli numbersB,=1/6,B,=—1/30..... 4 jrregular boundary. Moreover, as an application, we dis-
The Euler-MacLaurin formula converts a sum to a series. o5 the boundary effect on the Fermi energy.

Generally speaking, the Euler-MacLaurin formula can be
used as an approximate method to solve sums approximately. _ _ _ _ _
However, in some special cases, this series has only a finite A- Exact solutions for ideal gases in two-dimensional cases

number of nonzero terms, i.e£®"*Y(0)=0 when v is In this part, by using the Euler-MacLaurin formula, we

greater than a certain valirote thatB,,. ;=0 whenv>0),  calculate the boundary effects on ideal gases in two two-

and one can obtain the exact solution of the sum. dimensional cases exactly(a) ideal gases in two-
Moreover, a more general expression for the Eulerdimensional boxes angh) ideal gases on the lateral surface

MacLaurin formula is of cylinders.

mzl F(n) 1. Exact solutions for ideal gases in two-dimensional boxes

n=k

Next we discuss the exact solution for ideal gases in two-
m 1 B, dimensional boxes by using the Euler-MacLaurin formula.
=J F(nydn— s [F(m)—F(k)]+ =+ The energy spectrum of a particle in a two-dimensional
k 2 2! rectangular box of sidels, andL is

B
X[F'(m)—F"(k)]+ 4—?[F”’(m)—F"’(k)]+ T m2h? ( nZ n

2
E(ny,ny)= —+—y), ne,ny=12,.... (6)
5)

2m |_)2( |_§
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Then the grand potential of the system can be expressed 2. Exact solutions for ideal gases on the lateral surface
as of cylinders

Consider an ideal gas confined on the lateral surface of a
— S o BE(n, ) cylinder with radiusk and lengthL. Such a case is just the
In== +n2:1 n2:1 In[1+ze PEV]. (7)) same as the ideal gas confined in a two-dimensional box of
o sidesLy=27R andL,=L, but the wave vector along is

In this equation and following, the upper sign stands fordetermmed by periodic boundary conditions,

bosons and the lower sign for fermions. By use of the Euler- n,
MacLaurin formula, we can perform the summation exactly: ky==, ne=0,x1,+2, ..., (12

while the wave vector along is determined by fixed-end
boundary conditions,

InE=IJ’ J dn,dnyIn[1Fze FE(MMy)]
0oJo
L + 26 FE(0) =27 —1,2 13
*5 0dnxln[1+ze )] Y= ny=12,.... (13

1 1 The energy spectrum of a particle is
izf dnyln[lize*BE(O'”y)]IZIn(liz). 8 9y sp P
0

hZ
E(ny,ny)= ﬁ(k§+ kZ). (14)
We have
Then the grand potential can be calculated exactly by use of
_ S 1L 1 the Euler-MacLaurin formula,
InE=h(2) -7 hee2t Mm@, (O
INE=%2, > In[17ze FEMM)]
whereS=L,L, is the area andl =2(L,+L,) the perimeter ™y
of the box,A =h/\27mkT is the thermal wavelength, and S 1L
the function = th(z) ~ 2% Nad2), (15

w xo~1 where S=27RL is the area of the surface, and=2

ho(2)= (o) Jo Zflexlldx (10 x27R=4xR is the total length of the sides.
Furthermore, we can calculate the corresponding thermo-
dynamic quantities directly, e.g., the specific heat

equals the Bose-Einstein integig)(z) or the Fermi-Dirac

integral f .(z) in boson or fermion case, respectively.

Note that Eq.(9) is the exact solution for the grand po- &20' M— yhl(z) - i L\/E
tential. The first term is just the result obtained in the ther- Nk hi(2)  "ho(2)] N s
modynamic limitS—o; the boundary effect is described by 12
the second term which is proportional to the perimdter i ha/ol(2) _ } h1(2)hyA2) (16)
Comparing Eqg.(9) with the corresponding approximate re- 16hl2%z) 8 7 he(2) ’
sult given in Ref[4],

where
S 1L -
InE=—hy(2)— 75 Nad2)+ %hl(z), (12) . \/1+ LL_Z hi2) 1L ohy(2) 2

: 64N 'S i(2) 8N VS hi%(z)
we can see that the first two terms are completely equal to
each other and the error introduced by the approximation _ L L hy22) i
appears only in the third term which describes the topology 8N Vs h¥3(z) Jo
effect. The contribution from the topology effect is propor- Y= 1 L h22h 42 1
tional to the Euler-Poincareharacteristic numbey, in this 1— — “MRE 2
casey=1-r=1 sincer, the number of holes in this two- 4\N /s ho(2) Jo

dimensional box, equals zero. From this, we can see the

close analogy between the two results expressed in (@gs. The following relation is used in the calculation:
and(11). This close correspondence, notice that @qis an

exact solution, can be regarded as an evidence of the validity ﬂ: _Z h.(2) 17)
of the method given in Ref4]. aT T hy(2) Y
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B. Exact solutions for ideal gases in three-dimensional cases

We next calculate the boundary effects on ideal
two three-dimensional cases exactlg: ideal gases in

dimensional tubes with rectangular transverse cross sections,

and (b) ideal gases in three-dimensional boxes.

1. Ideal gases in three-dimensional tubes

Consider an ideal gas enclosed in a three-dimensional
tube with a rectangular transverse cross section of diges

andL,. Thez component of the momentupy, is contin

since the length of the tuble, is made sufficiently large. In
this case, the energy spectrum of a particle in the tube can be

written as

2
y

)

w2h?
2m

L3
2m’

2
ng n

|

ne,ny=12,....

E(nxanyapz): F P
X

The grand potential is

InEzIf thz > In[1Fze AEMNy P2

ny=1ny,=1

Here, we have converted the summation opginto an in-
tegral sincep, is continuous. Using the Euler-MacLaurin for-

mula, we can perform the summations ovgrand n,
actly:

.V
InE= Fhslz(z)

s 1L,
2 th(Z)Jr 7 YhSIZ(Z)-

PHYSICAL REVIEW E 70, 016103 (2004

The grand potential of an ideal gas in this box is

gases in

three- INE=% 2> > > In[1¥ze FEMenynd] (23
n=1ny=1n,=1

By use of the Euler-MacLaurin formula, we can calculate the
sum exactly:

InEzif f f dn,dn,dn,In[1F ze AEMNy M)
uous 070 Jo

1 o (o  BE(O
+— dnydn,In[15 ze AEONy N2

2)o Jo

1 © o)
+= f f dn,dn,In[ 15 ze AE(x0N2)]
2Jo0 Jo

1 0 o)
t—f f dn,dnyIn[ 15 ze™ FEMNNy.0)]
2Jo0 Jo

_1f°°
0

(18)

F—

2 dn,n[1F ze—BE(nx,o,O)]

1 oo
(19) *a f , a1+ 7z FE(ON,0)]

1(= 1
IZJ dnzln[lize*f’E(OvOnz)]tgln(liz). (24
0

ex-
Then we have

Y 1 L 1
(20 Inz=ﬁh5,2(z)—zﬁh2(z)+ 1_6Xh3/2(2)_§h1(2),

(25

Here the volume/=L,L,L, and the area of the lateral sur-

face of the tubes=L,L whereL=2(L,+L,) is the perim-

eter of the transverse cross section.
The first two terms of the exact solution E(R0)
consistent with the approximate result given in Réf,

.V 1S XL,
In:=Fh5/2(Z)_ZFh2(Z)+EThS/z(Z), (21)

where y is the Euler-Poincareharacteristic number

transverse cross section of the tube and in this gasé.

whereV=L,L,L, is the volumeS=2(L,L,+L,L,+L,L,)
the area of the surface, ard=4(L,+L,+L,) the total
length of the sides of the box.

We know that a box will change to a tube if its one side,
e.g.,L,, is made very long. Assuming,>L,,L,, we then
can take the approximatids=2(L,+L,)L, andL=A4L,. It
is easy to see that in this case E2p) is the same as E¢20)
except the last term which is negligibly small. In above dis-
cussions, we only concentrate on the case that the tempera-
ture of the system is higher than the critical temperature.

are

of the

Comparing Eq(20) with Eqg.(21) we can see that, just as the

two-dimensional case, the error only appears in the term cor-

responding to the topology effect.

2. Ideal gases in three-dimensional boxes

The energy spectrum of a particle in a three-dim
box of sidesL, Ly, andL, is

ny,ny,n,=12,....

2
nZ

L

wh?
E(nx Ny ,nz)= W

2
M

Ly

2
Ny

2
Ly 5

(22

C. The validity of the approximate method for calculating
geometry effects with irregular boundaries

In Ref. [4], for calculating geometry effects, we first ex-

pand the grand potential B=F3Jn(1¥ze %) as a series
aPf ze P, and then sum over all terms of the expansion after
calculating these terms by use of the result given by [&dc
Clearly, the validity of this treatment depends on the value of
the expansion parametee . Strictly speaking, however,
when the fugacitg>1, such as in Fermi-Dirac statistics, the
grand potential IfE can not be expanded in such a way. In
the preceding papd#] we performed the summation of the
expansion of the grand potential without proving the conver-

ension
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gence of the series, but, instead, we analyzed the validity afize system, ground-state energy and energy level spacing

the result by comparing it with the grand potential of an idealgrow larger as the size of the system decreases.

guantum gas in free space and showed that the grand poten-

tial in free space, whose validity is fully accepted, is just the IV. EXACT SOLUTIONS FOR IDEAL GASES

zeroth-order approximation of our result. With the help of the IN ANNULAR CONTAINERS

exact solutions obtained above, we can make further im-

provement on the analysis of the validity of this treatment. ~ The exact solutions for ideal gases in annular containers
Comparing the results obtained by the approximaté:an also be calculated with the hEID of the Euler-MacLaurin

method developed in Ref4] with the exact solutions calcu- formula. In this section, we consider an ideal quantum gas

lated in this section, we can see that this approximate methogPnfined in a one-dimensional ring of radiBs The energy

is valid for calculating the geometry effects in two- and Of the particle in such an annular container is determined by

three-dimensional ideal gas systems. So far we have appligigriodic boundary conditions:

two methods to performing the summation in the grand po- 5

tential for ideal gases in confined space. One is an approxi- _h n2 nN=0+1+2 (30)

mate method4] based on a mathematical work given by oM T T e

Kac [6]. Another is an exact one based on the Euler-

MacLaurin formula. The approximate method appliesThe grand potential of the ideal gas is

equally well to the exact method in calculating the boundary

effect, and the error introduced by the approximation appears o o

only in the topology terms and is indeed small. INE=% > In(1¥ze F)

n=-—w

]

oo

D. The boundary effect on the Fermi energy
=FIN(1T2)F2>, In[1Fze AA7@mR] (37
n=1

Using the result obtained above, we can consider the

boundary effect on the Fermi energy. From Ezp), we can _ _
obtain The summation over the discrete parameteran be con-

verted to an integral exactly, leading to
N V]c 1 Sf 1 Lf z
=g N 3/2(2)_ZF 12D+ D~ g 7|

® L
InE= :2J dnin[15ze AR = “hyp(z),
(26) °

(32)
whereg is a weight factor that arises from the internal struc-
ture of the particlesthe number of internal degrees of free-
dom).

The Fermi energyy, is the energy of the topmost filled
level in the ground state of the electron system, so

whereL=27R is the perimeter of the container. There is no
boundary effect because, for a ring, there is no boundary.
This is an interesting result. Generally speaking, for a finite
perimeterL, the energy levels, are always discrete, so the
summation in Eq(31) has to be performed approximately by

1 [ 52\ -32 1 1 /2\-1 replacing it by an integralEﬁZTxaffwdn. This replace-
N=g V—(— ud?— —S—(—) “o ment is based on the assumption that the momentum is con-
672 \2m 4 "4\ 2m tinuous, which is valid only whet.—o. In many cases,
such a treatment is an approximation that neglects the influ-
Lt i(ﬁ_z) et (07 enee of the boundary; however, in an annular container this
16 7\ 2m Ko — gl treatment gives an exact solution.

This result implies that, in a ring, e.g., an ideal electron

The Fermi energy can be exactly calculated from this equad@s in @ conductor ring, even the perimeter is very small,
tion; however, for clarity we only calculate the next-to- then the energy level spacings are very large, we can replace
leading-order correction, the summation by an integral safely. The thermodynamic be-

havior of an ideal gas in a ring is the same as that in infinite

K2 (2 ,N 23 42 195/375 N\ free space. Generally, it is easy to prove that there is no
Mo==—| =3 —) +-—= —(— —) (29 boundary effect when one applies periodic boundary condi-
2mig v 2m2Vi4g Vv tions, e.g., an ideal gas confined on a torus.
— Mgee+ Mgoundary. (29)

V. EXACT SOLUTIONS FOR PHOTON GASES

Note that, for an electron gas the spin weighgis2. Here IN THREE-DIMENSIONAL CAVITIES

whe® is just the Fermi energy in free space, ap§°u"da¥ In this section we calculate the exact solution for black-
reflects the influence of the boundary. It is easy to see thdiody radiation in confined space. From the electromagnetic
the existence of a boundary enhances the Fermi energy, afiéld theory, it is found that the allowed values kf(the
the Fermi energy increases with the decreasing size of th@omentump=7k) in a rectangular cavity of sidds,, L.,

system. This result is not difficult to understand: In a finiteandL, are
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k _’7T k o k_7T B . E(nx;nyinz) 39
L ST ST (Mely o) B,y g1 Y
= t is easy to see that the first term o corresponds to
Ne,ny,n,=0,12..., (33 Iti hat the fi ] _fl—j\38) d
the Stefan law of blackbody radiatiobte T [7]. It follows
and the energy of a photon is that the specific heat is
2 2 2 41° 34(3)
ny n; n _ 3 2
Cy=kjV kT)°*—S kT
E(nx,ny,nz)=cp=th\/L—§+L—2+L—;, (34 v { 15h3c3( ) 21-rh2c2( )
X y z
where ¢ is the velocity of light. Note that r{,,n,,n,) +L—(kT)+2[D(1 1,0+D(1,0,1)+D(0,1,1)];,
#(1,0,0), (0,1,0, (0,0,D, or (0,0,0, because if any two of
the integersn, ,ny ,n, are zero, then all of the components of (40)

the electromagnetic field will be zero. Since the number of
photons is indefinite, then the chemical potential of the syswhere
tem is identically zero, we have

[BE(nx Ny vnz)]ZeXF[IBE(nx Ny anz)]

© = D(ny,ny,n,) = )
nE=2 3 El > Al ny ) +A(LLO) {exd BE(nx.ny.n;)] -1} b

The contribution from the first term, which is proportional to
+A(1,0,.)+A(0,1,]) |, (35 the volume of the system, is just the result obtained under the
hypothesis thalv—o (the thermodynamic limjt The last
three terms, which correspond to the contributions from cer-
tain states, are so small that they can be neglected.
A(ny,Nny,n,) = —In{1—exd — BE(n,,n,,n)]} (36) Furthermor_e, from the result obtained ab_ove we can learn
that the density of states of a photon gas in confined space
and the factor 2 comes from the two possible polarizationsc@n be approximately written as
The summation in Eq(35) can be performed by using the

where

Euler-MacLaurin formula, plw)do=|V 21 3“’2_ Esiw do, (42)
e 4 mc?
_ vV T'(4) 1 ST(3) 1L
InE=2 BT (4)—Z—Zm {ERETIN where the second term describes the boundary effect. In
A other words, one can replace the summation over stijes
r'(2) by the integralf p(w)dw.
xm§(2)+A(1,1,0)+A(1,0,1)+A(0,1,1)
VI. PHONON GASES IN CONFINED SPACE
_v m? kT3-S 1 3)(KT)2+ L KT In this section, we discuss the boundary effect on phonon
- 4%3(:3( )° = Ah2C2 (B)(kT)"+ M gases. Solids are crystal lattices of atoms, each atom behav-
ing as a coupled harmonic oscillator in the harmonic ap-
+2[A(1,1,00+A(1,0,1)+A(0,1,1)], (37 proximation. Phonons correspond to the normal modes of the

system and behave as independent quantum oscillators. As-
where, as defined in Sec. 1§ is the area of the surface and sume that the system is a rectangular solid of dimendigns
L the total length of the sides of the cavit§(n) is the Ly, L,. The wave vector of the phondn s restricted by
Riemann zeta function\ = 2\/w#c/(kT) is the mean wave- fixed-end boundary conditioraot periodic boundary condi-
length of the photon. tions because the system we considered is jinitehe val-
For the total energy in the cavity, from E@®7) we obtain  ues

J 2 £(3) . 2 N, 7
= — — = 4_ 3 k 7 7 ot ’
U= aBInH—V15h3C3(kT) 2Cz(kT) L Ly Ly
T 27 Ny
+L—(kT)2+2[B(110)+B(101)+B(011)] Ky={ (43
y y
(38) = T 2 N, 7
where Z_I—Z’I—z,”.,l—z ,

016103-6



GEOMETRY EFFECTS IN CONFINED SPACE PHYSICAL REVIEW B, 016103 (2004

whereN;, i =X,y,z, is the number of atoms alongxis, and 0, 39 0, Op
the total number of atomdl=N,NyN,. Strictly speaking, U=+ NKT| =] | g +3Ds{
there are onlyN;— 1, notN;, allowed values ok;, because 0
the solution forN;7/L; permits no motion of any ator8]; S _w[1/6 6, | 6,
however, such an influence is so small that it can be ne- __Zle_G[§(?+2T +Dy| = +2D2(T”
a
glected safely.
The grand potential is (49)
3N 3N and the specific heat
INE=—p| o+ 2, 5hoi| =2 In(1—e )
=12 =1 oo —ani 2 s ap.| o) o /T S
N g VI PR T Ry e
== B| dot+ 2, Shi(ci+2c0k,
=1 6, 0,IT o, 01T
N N X| 3D, T _ZeellT—1+6D2 T _4e‘9t/T 1
-2, In(1—e Preki)—2 > In(1—e Phokiy,
2, In )=22, In( ) 50
(44) In the high-temperature limitT> 6, , 6, , 6, or x<1), the
internal energy and the specific heat are
where
U= o+ 3NKT| 3 1+ | 2
o=clkl, @=clK. (45) = %o %) |17 20l T
There are three polarizations for each valu&dfvo of these Sl 07 +267 51)
are transverse and one longituding}. is the velocity of a2 16 72 T2
transverse waves arg the velocity of longitudinal waves.
The summations in IE can be converted to a set of integrals and
by using the Euler-MacLaurin formul®). Neglecting higher 3 )
orders, we have co—ankl 2l 1o L%
v 6o 20\ T
0,\%9 6 0
nz=-22_N —p) ——p+3ln(1—e“’p’T)—D3(—p) S 3w 1 67+267
kT 6y) |18 T T k1= = (52
a2 16 72 T2 ’
S w|1 1 o 1 0,
T z3(0F20)F+In(1—e "7)— 5D, + where
0, s O N(RV 1 2\t
+2 |n(1_e—€t/T)_D2<_)} (46) 00:1877 v E —3+—3 (53)
T ¢ G
where and 0, equals the Debye temperature.
Correspondingly, in the low-temperature regiom (
hep mhy mhe, , :eec%,rzle, 6, or x>1) the internal energy and the specific heat
D= T % @D

9/6,\° 371

P

anda is the lattice constant. Like the Debye frequency in the U= o+ Nk g( 90) Op+ 3 T
0

Debye approximation we introduce the cutoff frequengy,

which will return to the Debye frequenayp so thaté,, will s [ = - 2
return to the Debye temperatutg when one neglects the =Kl R (6+20)+ L L(3)| S+ — T3 (59
contribution from the boundary effect. As an approximation, a> |48 4 o) t
we can takev,~ wp . Here we define the functidd ,(x) by and
vi[x.. & 127473 S 37 2
D,(x)= —J d¢ : (48) Cy=Nk—— ——=k—1(3)| 5+ —|T% (59
x'Jo T ef—1 v 5 8 & 4 0?0
the case ofv=3 gives the Debye function. Each expression of the thermodynamic quantities has
From Eq.(46), we can calculate the internal energy been divided into two parts: the first part, though it is also
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influenced by the boundary, is almost the result given bynanowires have aroused growing interest in condensed-
Debye; the second part, which is proportional to the area ofnatter physic§12]. The analysis presented above applies
the surface, describes the boundary effect. equally to such systems.

Moreover, similar to the case of ideal gases in annular Of special interest is the electron gas on a carbon nano-
containers, we can easily prove that there is no contributiofupe. It is known that the electronic structure of a carbon
coming from the term which is proportional to the area ofnanotube can be either metallic or semiconducting, depend-
the surface of the system if we apply periodic boundarying on its diameter and chiralityl3]. For the metallic case
conditions. we can treat the electrons on a nanotube as a free electron

gas on the lateral surface of a cylinder. In such a system,

VIl. GEOMETRY EFFECTS IN REALISTIC SYSTEMS along the perimeter of the transverse cross section, even the

size is very small so that the energy spectrum of the electrons

In this section, we shall br|eﬂy discuss the geometry Ef'is discrete, there is no boundary effésee Sec. |\y, other-
fects in realistic systems. Such effects are usually negligiblgyise, along the nanotube axis the boundary effect correction
in the thermodynamic limitY—<). The subject which will a5 to be reckoned in when the length of the nanotube is very
be of most interest to us will be that of boundary effects onghot \ith the help of the method provided in Sec. Il we
the thermodynamic property of the system in which the thera, caicylate the thermodynamic properties of such systems
rr_1a| wavelength of th_e particle is com_parabl_e to th_e_ SyStenaiirectly, e.g., the specific heat in ECL6).
size, e.g., mesoscopic systems or Op“C‘.i' microcavities. (2) Long and narrow systemSimple analysis reveals that

(1) Small size systents statistical physics, one often uses the effect of boundary on the observable is proportional to

the thermodynamic limit Y—«) as a convenient math- . .
ematical device in macroscopic limit. The system approacheE/\/g’ whereSis the area antl the perimeter of the system.

the macroscopic limit once its size is much larger than thel & magnitude of the factdr/\'S is determined by the ge-
thermal wavelength. The size of a mesoscopic system is b&metry of the system. If the shape of the system is long and
tween microscopic and macroscopic scale. In mesoscopRarrow, in principle, the factot/\'S can take on an arbi-
systems, of course, many of the rules in macroscopic physdrarily large value and hence the boundary effect will become
ics, such as the thermodynamic limitvhich neglects the significant even in macroscale.
boundary effegt may not hold. Many novel phenomena ex- (3) Blackbody radiation in small cavitied=rom visible
ist that are intrinsic to mesoscopic systems, e.g., size effectight to infrared, the range of the wavelength is from Q.
[9]. to about 18 xm. This means that if the size of a system is of
In realistic systems, the magnitude of boundary effects ighe order of microns, the boundary effect must be reckoned
determined by the ratia/L, where\ is the thermal wave- in. In Sec. V we have calculated the exact solution for black-
length andL denotes the linear size of the system. The therbody radiation in a three-dimensional rectangular cavity,
mal wavelength depends on two factors: the temperature dfom which we can estimate the influence of the boundary
the systenT and the mass of the particle. For electrons, fromeffect on blackbody radiation.
room temperature to 10 K the thermal wavelength is in the From Eq.(40) we can estimate the influence of the bound-
range of about 4 nm to 24 nm. This means that in a nanodry effect on the specific heat of a photon gas confined in a
system the boundary effect becomes important and cannot Isgnall cavity by comparing the contribution from the surface
neglected. Furthermore, in ultralow-temperature physics, oberm [the second term of Eq40)] with the result which is
viously, the boundary effect will become remarkable. Up toobtained based on the thermodynamic liftite first term of
now, the lowest temperature that can be obtained in experEd. (40)]. For this purpose, we introduce a ratig
ments is of the order of nKLOJ. In this ultralow-temperature = Cy/Cy, whereCy, is defined as the second term a@y
scale, the wavelength of a electron is of the order of 1 mmthe first term of Eq.(40). For the linear size of the system
the wavelength of a hydrogen atom is of the order of 0.1-.=1 mm and 0.1 mm, when the temperatiire 300 K, the
mm; in other words, in such a case, the boundary effect caratios » are about 1% and 10%; whén=100 K, the ratiosy
be measured in macroscale. are about 3% and 30%; moreover, whdr=10 K, L
In the case of ideal gases confined in annular containers ¢ 1 cm, the ration~3%. This result shows that, relative to
crystal lattices with periodic boundary conditions, howeverthe case of particles with nonzero rest magsédsse wave-
we have shown that every system, very large or very smallengths are relatively shgrtthe boundary effect is significant
will not show any boundary effects, that is to say, even in thén photon systems.
small systems like toru€;gy and C,49 molecules, if we can (4) Systems consisting of small graits Sec. VI we have
still treat such systems by the statistical method, there are ndiscussed the boundary correction to the Debye theory of the
boundary effects so long as the systems have the toroidabpecific heat of crystals. From E5) we can learn that at
structure. Recently, there are many studies on nanorings, elow temperature the boundary effect will become significant
pecially the metal nanoringd1]. It might be expected that since the contribution from the boundary term is proportional
the method and the result of ideal gases in annular containets T2, whereas the term corresponding to the Debye’s result
can be used to treat the electron gases in metal nanorings. proportional toT®. Therefore, the contribution from the
Moreover, metal wires having diameters in the range of naboundary effect will become more and more important with
nometer are very important for nanoelectronics and othea drop in temperature. Of course, the smaller the system size,
nanodevice applications, and, recently, ultrathin metathe stronger is the influence of the boundary. Consider a
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macroscopic system consisting of small grains. Such accurate theoretical description of the effect of particle-
granular material can be obtained, for example, by grinding @article interactions based on the binary collision method.
piece of crystal to a fine powder. In such a system the volWhenT>T,, whereT, is the critical temperature, the equa-

ume is almost the same as the volume before grindingtion of state can be expressed[ad|

whereas the total area of surface, which equals the sum of the

area of all grains in the system, becomes much larger. We P 1 2a ,

can rewrite the expression of the specific heat in the follow- KT ngxz(z)— Fg3,2(z)+ R (57

ing form for clarity:

wherea is the scattering length; the influence of the particle-
particle interactions is described in the second term. For ge-
ometry effects, Eq(25) gives the equation of state for an
ideal Bose gas in confined space:

V S
Cv=—3A(T)~ 5B(T), (56
a a

where the area of surfac~V?3, A(T) andB(T) are cer-

tain functions of the temperature. If we divide the volume P_1 e n

into n cells of volumeV/n, the total volume of the system is kT 7\395’2(2) 4 \/)\2 G2(2)F - -

roughly speaking stilV ; however, the total area of surface

becomes(V/n)?*=3/nV??. This means that the boundary From this result we can estimate the contributions from

effect will become important in granular materials. It can bethe geometry effects and the interparticle interactions:

found that before grinding the correction to the standard reThe leading contribution from the boundary is(1/4)S/

sult (the term which is proportional t&%) is on the order (VA?)g,(2); the leading contribution from the interparticle

a/3/V, here we have not reckoned in the influence of tem-nteraction is—(2a/)\4)g§,2(z). By comparing these two

perature though it is of equal importance, whereas aftecontributions, we can see that there exists a regime where the

grinding such a correction increases to the orfeta/3/V). geometry effect dominates in an imperfect gas. Introduce the
(5) Geometry effects versus fluctuatiofhe geometry ratio between these two contributions,

effect may be visible for small size systems. In such systems,

however, the fluctuations also may not be neglected since the 1 S\? g,(2)

total number of particledN is not macroscopic. A natural T8 Vg 2 2) (59)

guestion that may be asked is: Can one distinguish geometry 9312

effects from the fluctuation background? Based on the res“'Rﬁ/herea denotes the magnitude of the scattering length. The

calculated ab(_)ve, we can estimate in what cases the georﬂs‘gime in which the geometry effect becomes dominant can
etry effects will become apparent. Next we consider SOM§y” determined by the condition,> 1

special cases as examples. Using this result, we next compare the influence of the
The influence of fluctuations is on tge ordé_N/N. In" " geometry effects with the influence of the interparticle inter-
metals, take copper as an bexadmplef, T’ arontains about  4ctions on Bose-Einstein condensation. We will show that
107 free electrons. The ratipg”™"** ug™° reflects the influ-  the geometry effects, compared with the interparticle inter-
ence of the boundary on the Fermi energy. When the lineagctions, are important in some recent experiments on Bose-
size of the system is 5 nm , the rafi®"**¥ u{**~3.3%;  Einstein condensation in dilute atomic gases.
however, in this case the fluctuation is only about 0.9%; |n the recent experiments on Bose-Einstein condensation,
when the size of the system is 30 nm, the ratiothe shape of the condensate is either cigar shaped, with a
wboundary  free . 0.6%, but the fluctuation is about 0.06%. diameter about 1um and length 30Qum-5 mm, or ap-
This means that the magnitude of the fluctuation, though alsproximately round with a diameter of 10—%0n [15,16. As
cannot be neglected, is sufficiently smaller than that of thean example, the Bose gas we considered here is near the
boundary effect so that one can distinguish the boundaryritical point where the fugacitg~1 and the temperature
effect in nanoscale metal systems. T~T., and the shape of the corresponding condensate is
For photon gases with linear site=1 mm (macroscale  cigarlike (or threadlike, in other words, the shape of the
and temperaturd =300 K (room temperatupe the ratio  system is long and narrow. In such a system, the total area of
(=Cy/CV) is about 1%, but, in this case, the fluctuation isthe surface is approximately equal to the area of the lateral
negligibly small; for the case di=1 cm andT=10 K the  surface, so we have
ratio »~3%, but the fluctuation is only about 0.1%. That is
to say, the boundary effect can be measured in macroscopic
photon systems.
(6) Geometry effects versus particle-particle interactions
In most realistic systems, there will be interactions betweenvhered,,,, is the maximum size of the transverse cross sec-
the particles. Next, we compare the contribution from thetion of the system in which the geometry effect becomes
geometry effects with the influence of the interactions amonglominant. The parameters in some recent experiments have
the particles. the following orders of magnitudgl6]: For *H, the scatter-
(a) Bose caseFor dilute Bose gases, the weak interac-ing length a~0.065 nm, the thermal wavelengtt~0.25
tions between particles and their low density allow for anum, so we haved,~0.11 mm; for ‘Li, a~—1.5 nm,

(58)

)\2
dmaxwo-lzg, (60)
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A~1.2 pum, SO dpa~0.12 mm; for 2Na, a~2.8 nm, Taking a box of side lengtid as an example, we havg

A~0.26 um, SO dpa~2.9x10 3mm; for &Rb, a  =(3/8)(379) % (ad), wherel=(V/N)*?is the mean in-

~5.4 nm,A\~0.45 um, S0da,~4.3X10°3 mm. From this  terparticle distance. Obviously, ¥;>1, compared with the

result we can see that, compared with the interparticle interinterparticle interactions, the geometry effects will dominate

actions, the geometry effects cannot be ignored in the experin the systema;>1 gives the condition

ments on Bose-Einstein condensation *f and “Li. For

example, in the experiment on Bose-Einstein condensation d [

of atomic hydrogen the condensate is /A in diameter and T <1.1605- (65

5 mm in length[16], so the ration,~7.5, i.e., the geometry

effects are more important than the interparticle interactions

in the experiment on Bose-Einstein condensation of atomid his condition is equivalent to the requirement of low den-

hydrogen. sities and small system sizes. That is to say, in a small dilute
Strictly speaking, in the recent experiments on Bosefermi gas, the influence of geometry effects will exceed the

Einstein condensation the atomic gases are trapped in matjfluence of interparticle interactions.

netic traps rather than boxes with hard walls. Usually, such Furthermore, in this paper we also consider the geometry

traps are approximately described as effective threeeffects on photon gases and on phonon gases. The photon gas

dimensional harmonic wells cylindrically symmetric about can be regarded as a genuine ideal gas in statistical mechan-

the z axis. In the above analysis we assume that the Bosi€s since the cross section of photon-photon scattering, which

gases are trapped in hard-wall tubes, i.e., for simplifying thds only a loop correction, is exceedingly small. Therefore,

treatment, we replace the harmonic wells by tubes, but théhere is no contribution from the interparticle interaction. In

result, to orders of magnitude, is reliable. the harmonic approximation, the phonon gas can also be re-
(b) Fermi case For an imperfect Fermi gas the equation garded as an ideal gas. That is to say, in photon gases and in
of state is[14] phonon gases the contributions from the geometry effects are

the main corrections to the standard results.
P ] 1 o a
k= (2D S fsd2) =212+ D5 B+

(61)

VIIl. DISCUSSIONS AND CONCLUSIONS

The key problem in statistical mechanics is to calculate
wherej is the spin of the particle. Like the treatment in the the partition function, i.e., to solve the sum over all possible
Bose case, we can also compare the geometry effects wittates. Often, this sum is difficult to calculate. To calculate
the interparticle interactions by comparing the second termthe partition function approximately, in the thermodynamic
in Egs.(25) and(61) directly. Next, as an example, we com- limit V—o, one can convert the sum to an integral by intro-
pare these two influences on the ground state of a Fernducing a state density. In so doing, however, the information

system. about the system geometry has been lost because the ap-
The ground-state energy for an imperfect Fermi gas igproximation that the spectrum is continuous has been taken
given by (=1/2) [14,17] during this process. The information about the system geom-

etry is embodied in the structure of the spectrum, so if we
want to involve the geometry information in the thermody-
namic quantities, we have to solve the sum over the states
directly. We have developed two methods to solve the sum.
the contribution from the interparticle interactions describedone is an approximate method which can be used to deal
in the second term. The corresponding chemical potential igvith the system with an irregular boundafg]. Another
method considered in the present paper is based on the Euler-
n?(, N iterpart MacLaurin formula; sometimes this method leads to exact
po==—| 372 = ylree  interparticle acLaurin formula; sometimes this method leads to exac
2m \% 0 0 solutions. However, the prerequisite for applying the Euler-
(63)  MacLaurin formula is that the spectrum is already known.

) ) ) ) The method for performing the summation by the Euler-
whereu, is equal to the Fermi energy of the ideal Fermi gasyac1 aurin formula is easy to apply to the cases of ideal

plus the second term which describes the contribution fromyases in external potentials and nonideal gases if the spec-
the interparticle interactions. Similarly, as expressed in EQyym of the system is already known. Fortunately, the spec-
(28), the Fermi energy containingf the cbontgibution from thet,um can be obtained by using many systematic methods
boundary can be written 8= uo "+ ug” . Introduc-  exactly or approximately. We will discuss such cases in de-
ing a ratio ;= ™" u P2 we can compare the tajl elsewherd18].
corrections due to the geometry effects with the corrections Intrinsically the boundary effect arises from the interac-
that emerge from the interactions among the particles. Direaion between the particles and the boundary. The influence of
calculation gives this interaction can be embodied in boundary conditions. The
o fixed-end boundary condition, like the case of a particle in an
:i (3772)1/3} § ﬂ) (64) infinite depth potential, reflects the interaction between the
716 aviVv ’ particles and the wall of the box. However, if there is no

N 2/3 ﬁ2

N
37m°=| +Nz=2ma=+---, (62

E \/ 2m \Y

_3Nh2
T 5 2m

2/3 i 2

+ —

om dra—

\Y
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boundary, of course, there is no interaction between the par- APPENDIX: THERMODYNAMIC QUANTITIES
ticles and the boundary; in other words, there is no boundary IN THREE-DIMENSIONAL BOXES

effect. In such a case we may apply periodic boundary con- . .
ditions, and then the boundary terms will vanish in the exact FoII9W|ng ggneral procec_iures, we can obtain the the.rmo—
solution. dynamic quantities for an ideal gas in a three-dimensional

From the results given above, we can see that the gran@P*: @lthough the geometry terms in Eg5) make the deri-

potential of a system in confined space is less than that jyation ted|ou§.

free space since the sign of the leading geometry term, e.g., 1€ eduation of state,
the second term in Eq20), is negative. It means that the
existence of a boundary tends to reduce the number of states
of the system, in other words, to reduce the volume of the
phase space—the set of all possible states. This is just be-
cause, for ideal gases, in free space the spectrum is continu-
ous while in confined space the spectrum gets discrete. Thus
the number of modes in confined space is less than that in
free space.

The boundary term which is proportional to the area of N=z—InE=—hsz)— 7 —hi(2)
the surface is always negativtae other terms corresponding A A
to geometry effects are usually negligiplé natural ques- 1L 1
tion that may be asked is: What will happen when the con- + — —hy(2)— shy(2).
tribution from the boundary effect become large enough, 16\ 8
e.g., in the case of the size of the system is very small or th
temperature is very low, so that the grand potential is |eS§1ternaI energy,
than zero? The answer is that in such a case the statistic:aL|
method is no longer valid because the grand potential is the—_
logarithm of the grand partition function and a negative

PV Vv 1s
ﬁzln:ZFhs/z(Z)—Zth(Z)

1L 1
+ th3’2(2)_ ghl(z),

grand potential means that the number of the states is less
than one. :§h5/2(2)(1+A)+£ —E—h (Z)+iEh (2)
In conclusion, by using the Euler-MacLaurin formula, the 2 h3(2) N| 4,27 32\ AT

geometry effects on the statistical mechanics of various sys-

tems, such as ideal Bose and Fermi gases, photon gased)ere
phonon gases, are discussed. From the exact solutions we

can see that the grand potential can be expressed as a sum of 1
two parts: one is just the result obtained in the thermody- A= N
namic limit V—o; another is the contribution from the ge-
ometry effect. The latter consists of a series of terms: the fir
term, by comparing with the result given in Rg4], reflects
the influence of the shape of the boundary; the second term, Cy [15hgoz) 9 ha(z)— &,
which is proportional to the Euler-Poincaharacteristic Nk~ 721 2 ~ah =2 }(1+A)
number, reflects the influence of the topological property of 8/2 1z 2

the system; the rest terms are always negligible and the num- 11 3 hap(z)— &
ber of such terms is finite when the problem is exactly solv- —=——1hy(2)— =hy(2) M}
able, or else it may be infinite. Moreover, we discuss the 2N \2 4 h1o(2) = 5
validity of the approximate method for calculating the effects 31
of boundary and connectivity, presented in Réi, which is +—=
based on the mathematical work given by K&tand can be 64N
used to deal with the ideal gas system with an irregular
boundary in two dimensions. We aiso analyze the possiblé¥/here
geometry effects in realistic systems. It is hoped that the
geometry effects can be encountered in the regime of meso-
scopic scale. For photon gases, the geometry effects may be
observed even in macroscale systems. In imperfect gases, we
compare the geometry effects with the interparticle interac- 15 1 LA? 13

tions and point out that there exists a regime where the ge- 52_2 VhO(Z)_ TBTh*UZ(Z)J’ 8 Vhfl(z)'
ometry effects dominate in interacting systems.

1 1L 1
1 Fhl(z)_ 1_6Xh1/2(z)+ gho(z) :

SitSpecific heat,

hy(z)— 6
[ h3A(z) —hyA2) —hjz(z) — 5j ,

>

1S\ 1 LA?
51:6 vhl(z)_ 4—87h1/2(2),

We also have
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