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Geometry effects in confined space
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In this paper we calculate some exact solutions of the grand partition functions for quantum gases in
confined space, such as ideal gases in two- and three-dimensional boxes, in tubes, in annular containers, on the
lateral surface of cylinders, and photon gases in three-dimensional boxes. Based on these exact solutions,
which, of course, contain the complete information about the system, we discuss the geometry effect which is
neglected in the calculation with the thermodynamic limitV→`, and analyze the validity of the quantum
statistical method which can be used to calculate the geometry effect on ideal quantum gases confined in
two-dimensional irregular containers. We also calculate the grand partition function for phonon gases in
confined space. Finally, we discuss the geometry effects in realistic systems.
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I. INTRODUCTION

In statistical mechanics, for seeking the sum over all p
sible states, we always take the approximation that the
ume of the system tends to infinity. In so doing we have l
all information about the geometry property of the syst
because in such an approximation the spectrum of sin
particle states is continuous while the total number of sta
is independent of the shape of the boundary and simply
portional to the volume of the system. However, the prop
ties of some systems found recently are shape dependen
sensitive to the topology@1–3#. In Ref. @4#, we developed a
method for calculating the effects of boundary and topolo
on ideal Bose and Fermi gases in confined space.

In the thermodynamic limit, one can replace the summ
tion over states by an integral:(s→*d«r(«), where

r~«!5V
~2pm!d/2

hdG~d/2!
«d/221 ~1!

is the density of states of ad-dimensional gas of dispersio
E5p2/(2m). However, if the system is enclosed in a fini
volume, the structure of the phase space will be changed
confined space, the spectrum of single-particle states
depend on the shape of the boundary. This is important if
thermal wavelength of particles is comparable to the size
the container, that is to say, the replacement of the sum
tion with the integral with the density of states, Eq.~1!, is a
good approximation only when the volume is large enou
so that the particle can not feel the boundary.

For taking into account geometry effects, in the preced
paper@4# we proposed that for the case of a two-dimensio
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ideal quantum gas confined in an irregular container, the d
sity of states, after neglecting the topological contributio
can be written as

r~«!5S
2pm

h2
2

1

4
L

~2m!1/2

h

1

«1/2
, ~2!

where S is the area andL the perimeter of the containe
Moreover, for the case of a three-dimensional ideal quan
gas in a long tube, of which all transverse cross sections k
the same, the density of states is

r~«!5LzS
~2pm!3/2

h3G~3/2!
«1/22

1

4
LzL

2pm

h2
. ~3!

S andL here denote the area and perimeter of the transv
cross section of the tube, respectively, and the length of
tubeLz is made sufficiently large so that thez component of
the momentumpz can be considered to be continuous. T
second terms of Eqs.~2! and ~3! describe the contributions
from the boundary.

In the present paper, for analyzing geometry effects,
will calculate some exact solutions for ideal gases and p
ton gases in various kinds of confined space, and provide
approximate result for phonon gases in confined space.
comparing these exact and approximate solutions with
result obtained in the thermodynamic limitV→`, we can
extract the information about boundary shape and topolo
Furthermore, the validity of the method presented in Ref.@4#
can be further justified by comparing it with these exact
lutions.

It can be found that the corrections to the standard res
which are on the orderl/L wherel is the thermal wave-
length andL denotes the linear size of the system. At the e
of this paper, we will discuss such geometry effects in re
istic systems.
©2004 The American Physical Society03-1
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In Sec. II, we discuss the method which will be used
this paper for calculating geometry effects. In Sec. III, w
calculate the exact solutions for ideal gases in tw
dimensional boxes and three-dimensional tubes and bo
By comparing Eqs.~2! and~3! with these exact solutions, w
can see that the densities of states given by Eqs.~2! and ~3!
are very good approximations for discussing ideal gase
confined space. Moreover, in this section, we also cons
the geometry effect on the Fermi energy. In Sec. IV,
calculate the exact solutions for ideal gases in annular c
tainers. The result shows no boundary effects in such
tems even the scales of the systems are very small. In Se
we calculate the exact solutions for photon gases in confi
space, and compare the thermodynamic quantities with
standard result of blackbody radiation. In Sec. VI, we cal
late an approximate result for phonon gases in confi
space. Based on this result, we can analyze the boun
effect on the lattice specific heat. In Sec. VII, we analyze
geometry effects in realistic systems and compare the in
ence of geometry effects with the influence of fluctuatio
and interparticle interactions. The conclusions are sum
rized in Sec. VIII while some expressions of thermodynam
quantities are given in the Appendix.

II. THE METHOD FOR CALCULATING
GEOMETRY EFFECTS

For an exact study of statistical mechanics in confin
space, the geometry effect has to be reckoned in. To see
exact solution of a grand potential, we need to find a met
to perform the summation over all possible states because
energy spectrum is discrete in confined space. In the foll
ing we will solve the sum by using the Euler-MacLaur
formula @5#:

(
n50

`

F~n!5E
0

`

F~n!dn1
1

2
F~0!2

1

2!
B2F8~0!

2
1

4!
B4F-~0!1•••, ~4!

whereBn are Bernoulli numbers:B251/6, B4521/30, . . . .
The Euler-MacLaurin formula converts a sum to a seri

Generally speaking, the Euler-MacLaurin formula can
used as an approximate method to solve sums approxima
However, in some special cases, this series has only a fi
number of nonzero terms, i.e.,F (2n11)(0)50 when n is
greater than a certain value~note thatB2n1150 whenn.0!,
and one can obtain the exact solution of the sum.

Moreover, a more general expression for the Eu
MacLaurin formula is

(
n5k

m21

F~n!

5E
k

m

F~n!dn2
1

2
@F~m!2F~k!#1

B2

2!

3@F8~m!2F8~k!#1
B4

4!
@F-~m!2F-~k!#1•••,

~5!
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which will be used to discuss the phonon gas in confin
space.

In statistical mechanics, one always replaces the sum
tion over states by an integral in the thermodynamic lim
V→`. This treatment is equivalent to replacing the summ
tion only by the integral on the right-hand side of Eq.~4! but
neglecting the contribution from the rest terms. The inform
tion about the geometry of the system is contained in
summation over states since the structure of the spectrum
noninteracting particles is determined by the system ge
etry. The geometry information, however, will be lost aft
the replacement of the summation with the integral; in ot
words, the integral in Eq.~4! does not contain geometr
information, that is to say, the rest terms in Eq.~4! corre-
spond to geometry effects.

It is natural to expect that if there is no boundary, there
no boundary effect at all. No boundary implies period
boundary conditions; in other words, there will be no boun
ary effect if we apply periodic boundary conditions. For e
ample, we will show that there is no boundary effect in t
system of an ideal gas in an annular container.

The prerequisite for applying the Euler-MacLaurin fo
mula to solving the sum over states is that the energy sp
trum of the system must be known. Whether one can ob
an exact solution or not depends on whether the series h
finite number of nonzero terms. If there are infinite nonze
F (2n11)(k), one obtains only an approximate solution. In t
following we will calculate some exact and approximate s
lutions for ideal gases, photon gases, and phonon gase
confined space.

III. EXACT SOLUTIONS FOR IDEAL GASES
IN CONFINED SPACE

In this section, we first calculate some exact solutions
ideal gases in two- and three-dimensional confined sp
Based on these exact solutions we then discuss the val
of the approximate method provided in Ref.@4#, which can
be used to calculate the geometry effect in the system w
an irregular boundary. Moreover, as an application, we d
cuss the boundary effect on the Fermi energy.

A. Exact solutions for ideal gases in two-dimensional cases

In this part, by using the Euler-MacLaurin formula, w
calculate the boundary effects on ideal gases in two tw
dimensional cases exactly:~a! ideal gases in two-
dimensional boxes and~b! ideal gases on the lateral surfac
of cylinders.

1. Exact solutions for ideal gases in two-dimensional boxes

Next we discuss the exact solution for ideal gases in tw
dimensional boxes by using the Euler-MacLaurin formula

The energy spectrum of a particle in a two-dimensio
rectangular box of sidesLx andLy is

E~nx ,ny!5
p2\2

2m S nx
2

Lx
2

1
ny

2

Ly
2D , nx ,ny51,2, . . . . ~6!
3-2
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Then the grand potential of the system can be expres
as

ln J57 (
nx51

`

(
ny51

`

ln@17ze2bE(nx ,ny)#. ~7!

In this equation and following, the upper sign stands
bosons and the lower sign for fermions. By use of the Eu
MacLaurin formula, we can perform the summation exac

ln J57E
0

`E
0

`

dnxdnyln@17ze2bE(nx ,ny)#

6
1

2E0

`

dnxln@17ze2bE(nx,0)#

6
1

2E0

`

dnyln@17ze2bE(0,ny)#7
1

4
ln~17z!. ~8!

We have

ln J5
S

l2
h2~z!2

1

4

L

l
h3/2~z!1

1

4
h1~z!, ~9!

whereS5LxLy is the area andL52(Lx1Ly) the perimeter
of the box,l5h/A2pmkT is the thermal wavelength, an
the function

hs~z!5
1

G~s!
E

0

` xs21

z21ex71
dx ~10!

equals the Bose-Einstein integralgs(z) or the Fermi-Dirac
integral f s(z) in boson or fermion case, respectively.

Note that Eq.~9! is the exact solution for the grand po
tential. The first term is just the result obtained in the th
modynamic limitS→`; the boundary effect is described b
the second term which is proportional to the perimeterL.
Comparing Eq.~9! with the corresponding approximate r
sult given in Ref.@4#,

ln J5
S

l2
h2~z!2

1

4

L

l
h3/2~z!1

x

6
h1~z!, ~11!

we can see that the first two terms are completely equa
each other and the error introduced by the approxima
appears only in the third term which describes the topolo
effect. The contribution from the topology effect is propo
tional to the Euler-Poincare´ characteristic numberx, in this
casex512r 51 sincer, the number of holes in this two
dimensional box, equals zero. From this, we can see
close analogy between the two results expressed in Eqs~9!
and~11!. This close correspondence, notice that Eq.~9! is an
exact solution, can be regarded as an evidence of the val
of the method given in Ref.@4#.
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2. Exact solutions for ideal gases on the lateral surface
of cylinders

Consider an ideal gas confined on the lateral surface
cylinder with radiusR and lengthL. Such a case is just th
same as the ideal gas confined in a two-dimensional bo
sidesLx52pR and Ly5L, but the wave vector alongx is
determined by periodic boundary conditions,

kx5
nx

R
, nx50,61,62, . . . , ~12!

while the wave vector alongy is determined by fixed-end
boundary conditions,

ky5
nyp

L
, ny51,2, . . . . ~13!

The energy spectrum of a particle is

E~nx ,ny!5
\2

2m
~kx

21ky
2!. ~14!

Then the grand potential can be calculated exactly by us
the Euler-MacLaurin formula,

ln J57(
nx

(
ny

ln@17ze2bE(nx ,ny)#

5
S

l2
h2~z!2

1

4

L

l
h3/2~z!, ~15!

where S52pRL is the area of the surface, andL52
32pR54pR is the total length of the sides.

Furthermore, we can calculate the corresponding ther
dynamic quantities directly, e.g., the specific heat

CV

Nk
5s F2

h2~z!

h1~z!
2g

h1~z!

h0~z!G2
1

AN

L

AS
As

3F 3

16

h3/2~z!

h1
1/2~z!

2
1

8
g

h1
1/2~z!h1/2~z!

h0~z! G , ~16!

where

s5FA11
1

64N

L2

S

h1/2
2 ~z!

h1~z!
2

1

8AN

L

AS

h1/2~z!

h1
1/2~z!

G22

,

g5

12
1

8AN

L

AS

h1/2~z!

h1
1/2~z!

1

As

12
1

4AN

L

AS

h1
1/2~z!h21/2~z!

h0~z!

1

As

.

The following relation is used in the calculation:

]z

]T
52

z

T

h1~z!

h0~z!
g. ~17!
3-3
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B. Exact solutions for ideal gases in three-dimensional cases

We next calculate the boundary effects on ideal gase
two three-dimensional cases exactly:~a! ideal gases in three
dimensional tubes with rectangular transverse cross sect
and ~b! ideal gases in three-dimensional boxes.

1. Ideal gases in three-dimensional tubes

Consider an ideal gas enclosed in a three-dimensio
tube with a rectangular transverse cross section of sideLx
andLy . Thez component of the momentumpz is continuous
since the length of the tubeLz is made sufficiently large. In
this case, the energy spectrum of a particle in the tube ca
written as

E~nx ,ny ,pz!5
p2\2

2m S nx
2

Lx
2

1
ny

2

Ly
2D 1

pz
2

2m
,

nx ,ny51,2, . . . . ~18!

The grand potential is

ln J57E
2`

` Lzdpz

h (
nx51

`

(
ny51

`

ln@17ze2bE(nx ,ny ,pz)#.

~19!

Here, we have converted the summation overpz into an in-
tegral sincepz is continuous. Using the Euler-MacLaurin fo
mula, we can perform the summations overnx and ny ex-
actly:

ln J5
V

l3
h5/2~z!2

1

4

S

l2
h2~z!1

1

4

Lz

l
h3/2~z!. ~20!

Here the volumeV5LxLyLz and the area of the lateral su
face of the tubeS5LzL whereL52(Lx1Ly) is the perim-
eter of the transverse cross section.

The first two terms of the exact solution Eq.~20! are
consistent with the approximate result given in Ref.@4#,

ln J5
V

l3
h5/2~z!2

1

4

S

l2
h2~z!1

x

6

Lz

l
h3/2~z!, ~21!

wherex is the Euler-Poincare´ characteristic number of th
transverse cross section of the tube and in this casex51.
Comparing Eq.~20! with Eq. ~21! we can see that, just as th
two-dimensional case, the error only appears in the term
responding to the topology effect.

2. Ideal gases in three-dimensional boxes

The energy spectrum of a particle in a three-dimensio
box of sidesLx , Ly , andLz is

E~nx ,ny ,nz!5
p2\2

2m S nx
2

Lx
2

1
ny

2

Ly
2

1
nz

2

Lz
2D ,

nx ,ny ,nz51,2, . . . . ~22!
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The grand potential of an ideal gas in this box is

ln J57 (
nx51

`

(
ny51

`

(
nz51

`

ln@17ze2bE(nx ,ny ,nz)#. ~23!

By use of the Euler-MacLaurin formula, we can calculate t
sum exactly:

ln J57E
0

`E
0

`E
0

`

dnxdnydnzln@17ze2bE(nx ,ny ,nz)#

6
1

2E0

`E
0

`

dnydnzln@17ze2bE(0,ny ,nz)#

6
1

2E0

`E
0

`

dnxdnzln@17ze2bE(nx,0,nz)#

6
1

2E0

`E
0

`

dnxdnyln@17ze2bE(nx ,ny,0)#

7
1

4E0

`

dnxln@17ze2bE(nx,0,0)#

7
1

4E0

`

dnyln@17ze2bE(0,ny,0)#

7
1

4E0

`

dnzln[17ze2bE(0,0,nz)] 6
1

8
ln~17z!. ~24!

Then we have

ln J5
V

l3
h5/2~z!2

1

4

S

l2
h2~z!1

1

16

L

l
h3/2~z!2

1

8
h1~z!,

~25!

whereV5LxLyLz is the volume,S52(LxLy1LyLz1LzLx)
the area of the surface, andL54(Lx1Ly1Lz) the total
length of the sides of the box.

We know that a box will change to a tube if its one sid
e.g.,Lz , is made very long. AssumingLz@Lx ,Ly , we then
can take the approximationS.2(Ly1Lx)Lz andL.4Lz . It
is easy to see that in this case Eq.~25! is the same as Eq.~20!
except the last term which is negligibly small. In above d
cussions, we only concentrate on the case that the temp
ture of the system is higher than the critical temperature

C. The validity of the approximate method for calculating
geometry effects with irregular boundaries

In Ref. @4#, for calculating geometry effects, we first ex
pand the grand potential lnJ57(sln(17ze2bes) as a series
of ze2bes, and then sum over all terms of the expansion af
calculating these terms by use of the result given by Kac@6#.
Clearly, the validity of this treatment depends on the value
the expansion parameterze2bes. Strictly speaking, however
when the fugacityz.1, such as in Fermi-Dirac statistics, th
grand potential lnJ can not be expanded in such a way.
the preceding paper@4# we performed the summation of th
expansion of the grand potential without proving the conv
3-4
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gence of the series, but, instead, we analyzed the validit
the result by comparing it with the grand potential of an id
quantum gas in free space and showed that the grand p
tial in free space, whose validity is fully accepted, is just t
zeroth-order approximation of our result. With the help of t
exact solutions obtained above, we can make further
provement on the analysis of the validity of this treatmen

Comparing the results obtained by the approxim
method developed in Ref.@4# with the exact solutions calcu
lated in this section, we can see that this approximate me
is valid for calculating the geometry effects in two- an
three-dimensional ideal gas systems. So far we have app
two methods to performing the summation in the grand
tential for ideal gases in confined space. One is an appr
mate method@4# based on a mathematical work given b
Kac @6#. Another is an exact one based on the Eul
MacLaurin formula. The approximate method appli
equally well to the exact method in calculating the bound
effect, and the error introduced by the approximation appe
only in the topology terms and is indeed small.

D. The boundary effect on the Fermi energy

Using the result obtained above, we can consider
boundary effect on the Fermi energy. From Eq.~25!, we can
obtain

N5gF V

l3
f 3/2~z!2

1

4

S

l2
f 1~z!1

1

16

L

l
f 1/2~z!2

1

8

z

z11G ,

~26!

whereg is a weight factor that arises from the internal stru
ture of the particles~the number of internal degrees of fre
dom!.

The Fermi energym0 is the energy of the topmost fille
level in the ground state of theN electron system, so

N5gFV
1

6p2 S \2

2mD 23/2

m0
3/22

1

4
S

1

4p S \2

2mD 21

m0

1
1

16
L

1

p S \2

2mD 21/2

m0
1/22

1

8G . ~27!

The Fermi energy can be exactly calculated from this eq
tion; however, for clarity we only calculate the next-t
leading-order correction,

m0.
\2

2m S 2

g
3p2

N

VD 2/3

1
\2

2m

1

2

S

V S 3p5

4g

N

VD 1/3

~28!

5m0
free1m0

boundary. ~29!

Note that, for an electron gas the spin weight isg52. Here
m0

free is just the Fermi energy in free space, andm0
boundary

reflects the influence of the boundary. It is easy to see
the existence of a boundary enhances the Fermi energy,
the Fermi energy increases with the decreasing size of
system. This result is not difficult to understand: In a fin
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size system, ground-state energy and energy level spa
grow larger as the size of the system decreases.

IV. EXACT SOLUTIONS FOR IDEAL GASES
IN ANNULAR CONTAINERS

The exact solutions for ideal gases in annular contain
can also be calculated with the help of the Euler-MacLau
formula. In this section, we consider an ideal quantum
confined in a one-dimensional ring of radiusR. The energy
of the particle in such an annular container is determined
periodic boundary conditions:

«n5
\2

2mR2
n2, n50,61,62, . . . . ~30!

The grand potential of the ideal gas is

ln J57 (
n52`

`

ln~17ze2b«n!

57 ln~17z!72(
n51

`

ln@17ze2bn2\2/(2mR2)#. ~31!

The summation over the discrete parametern can be con-
verted to an integral exactly, leading to

ln J572E
0

`

dn ln@17ze2bn2\2/(2mR2)#5
L

l
h3/2~z!,

~32!

whereL52pR is the perimeter of the container. There is n
boundary effect because, for a ring, there is no bound
This is an interesting result. Generally speaking, for a fin
perimeterL, the energy levels«n are always discrete, so th
summation in Eq.~31! has to be performed approximately b
replacing it by an integral:(n52`

` →*2`
` dn. This replace-

ment is based on the assumption that the momentum is
tinuous, which is valid only whenL→`. In many cases,
such a treatment is an approximation that neglects the in
ence of the boundary; however, in an annular container
treatment gives an exact solution.

This result implies that, in a ring, e.g., an ideal electr
gas in a conductor ring, even the perimeter is very sm
then the energy level spacings are very large, we can rep
the summation by an integral safely. The thermodynamic
havior of an ideal gas in a ring is the same as that in infin
free space. Generally, it is easy to prove that there is
boundary effect when one applies periodic boundary con
tions, e.g., an ideal gas confined on a torus.

V. EXACT SOLUTIONS FOR PHOTON GASES
IN THREE-DIMENSIONAL CAVITIES

In this section we calculate the exact solution for blac
body radiation in confined space. From the electromagn
field theory, it is found that the allowed values ofk ~the
momentump5\k! in a rectangular cavity of sidesLx , Ly ,
andLz are
3-5
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kx5
p

Lx
nx , ky5

p

Ly
ny , kz5

p

Lz
nz ,

nx ,ny ,nz50,1,2, . . . , ~33!

and the energy of a photon is

E~nx ,ny ,nz!5cp5p\cAnx
2

Lx
2

1
ny

2

Ly
2

1
nz

2

Lz
2
, ~34!

where c is the velocity of light. Note that (nx ,ny ,nz)
Þ(1,0,0), ~0,1,0!, ~0,0,1!, or ~0,0,0!, because if any two of
the integersnx ,ny ,nz are zero, then all of the components
the electromagnetic field will be zero. Since the number
photons is indefinite, then the chemical potential of the s
tem is identically zero, we have

ln J52F (
nx51

`

(
ny51

`

(
nz51

`

A~nx ,ny ,nz!1A~1,1,0!

1A~1,0,1!1A~0,1,1!G , ~35!

where

A~nx ,ny ,nz!52 ln$12exp@2bE~nx ,ny ,nz!#% ~36!

and the factor 2 comes from the two possible polarizatio
The summation in Eq.~35! can be performed by using th
Euler-MacLaurin formula,

ln J52F V

l3

G~4!

G~5/2!
z~4!2

1

4

S

l2

G~3!

G~2!
z~3!1

1

16

L

l

3
G~2!

G~3/2!
z~2!1A~1,1,0!1A~1,0,1!1A~0,1,1!G

5V
p2

45\3c3
~kT!32S

1

4p\2c2
z~3!~kT!21L

p

48\c
kT

12@A~1,1,0!1A~1,0,1!1A~0,1,1!#, ~37!

where, as defined in Sec. III,S is the area of the surface an
L the total length of the sides of the cavity,z(n) is the
Riemann zeta function,l52Ap\c/(kT) is the mean wave-
length of the photon.

For the total energy in the cavity, from Eq.~37! we obtain

U52
]

]b
ln J5V

p2

15\3c3
~kT!42S

z~3!

2p\2c2
~kT!3

1L
p

48\c
~kT!212@B~1,1,0!1B~1,0,1!1B~0,1,1!#,

~38!

where
01610
f
-

s.

B~nx ,ny ,nz!5
E~nx ,ny ,nz!

exp@bE~nx ,ny ,nz!#21
. ~39!

It is easy to see that the first term of Eq.~38! corresponds to
the Stefan law of blackbody radiation:U}T4 @7#. It follows
that the specific heat is

CV5kH V
4p2

15\3c3
~kT!32S

3z~3!

2p\2c2
~kT!2

1L
p

24\c
~kT!12@D~1,1,0!1D~1,0,1!1D~0,1,1!#J ,

~40!

where

D~nx ,ny ,nz!5
@bE~nx ,ny ,nz!#

2exp@bE~nx ,ny ,nz!#

$exp@bE~nx ,ny ,nz!#21%2
.

~41!

The contribution from the first term, which is proportional
the volume of the system, is just the result obtained under
hypothesis thatV→` ~the thermodynamic limit!. The last
three terms, which correspond to the contributions from c
tain states, are so small that they can be neglected.

Furthermore, from the result obtained above we can le
that the density of states of a photon gas in confined sp
can be approximately written as

r~v!dv5S V
1

p2c3
v22

1

4
S

1

pc2
v D dv, ~42!

where the second term describes the boundary effect
other words, one can replace the summation over state(s
by the integral*r(v)dv.

VI. PHONON GASES IN CONFINED SPACE

In this section, we discuss the boundary effect on phon
gases. Solids are crystal lattices of atoms, each atom be
ing as a coupled harmonic oscillator in the harmonic a
proximation. Phonons correspond to the normal modes of
system and behave as independent quantum oscillators
sume that the system is a rectangular solid of dimensionsLx ,
Ly , Lz . The wave vector of the phononk is restricted by
fixed-end boundary conditions~not periodic boundary condi
tions because the system we considered is finite! to the val-
ues

kx5
p

Lx
,
2p

Lx
, . . . ,

Nxp

Lx
,

ky5
p

Ly
,
2p

Ly
, . . . ,

Nyp

Ly
, ~43!

kz5
p

Lz
,
2p

Lz
, . . . ,

Nzp

Lz
,
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whereNi , i 5x,y,z, is the number of atoms alongi axis, and
the total number of atomsN5NxNyNz . Strictly speaking,
there are onlyNi21, notNi , allowed values ofki , because
the solution forNip/Li permits no motion of any atom@8#;
however, such an influence is so small that it can be
glected safely.

The grand potential is

ln J52bS f01(
i 51

3N
1

2
\v i D 2(

i 51

3N

ln~12e2b\v i !

52bFf01(
i 51

N
1

2
\~cl12ct!ki G

2(
i 51

N

ln~12e2b\clki !22(
i 51

N

ln~12e2b\ctki !,

~44!

where

v l5cl uku, v t5ctuku. ~45!

There are three polarizations for each value ofk: two of these
are transverse and one longitudinal.ct is the velocity of
transverse waves andcl the velocity of longitudinal waves
The summations in lnJ can be converted to a set of integra
by using the Euler-MacLaurin formula~5!. Neglecting higher
orders, we have

ln J52
f0

kT
2NS up

u0
D 3F9

8

up

T
13 ln~12e2up /T!2D3S up

T D G
1

S

a2

p

16F1

3
~u l12u t!

1

T
1 ln~12e2u l /T!2

1

2
D2S u l

T D
12 ln~12e2u t /T!2D2S u t

T D G , ~46!

where

up5
\vp

k
, u l5

p\cl

ka
, u t5

p\ct

ka
, ~47!

anda is the lattice constant. Like the Debye frequency in t
Debye approximation we introduce the cutoff frequencyvp ,
which will return to the Debye frequencyvD so thatup will
return to the Debye temperatureuD when one neglects th
contribution from the boundary effect. As an approximatio
we can takevp' vD . Here we define the functionDs(x) by

Dn~x!5
n

xnE0

x

dj
jn

ej21
; ~48!

the case ofn53 gives the Debye function.
From Eq.~46!, we can calculate the internal energy
01610
e-

e

,

U5f01NkTS up

u0
D 3F9

8

up

T
13D3S up

T D G
2

S

a2
kT

p

16F1

3 S u l

T
12

u t

T D1D2S u l

T D12D2S u t

T D G
~49!

and the specific heat

CV53NkS up

u0
D 3F4D3S up

T D23
up /T

eup /T21
G2

S

a2
k

p

16

3F3D2S u l

T D22
u l /T

eu l /T21
16D2S u t

T D24
u t /T

eu t /T21
G .

~50!

In the high-temperature limit (T@up ,u l ,u t or x!1), the
internal energy and the specific heat are

U5f013NkTS up

u0
D 3F11

1

20S up

T D 2G
2

S

a2
kT

3p

16 F11
1

72

u l
212u t

2

T2 G ~51!

and

CV53NkS up

u0
D 3F12

1

20S up

T D 2G
2

S

a2
k

3p

16 F12
1

72

u l
212u t

2

T2 G , ~52!

where

u0
3518p2

N

V S \

k D 3S 1

cl
3

1
2

ct
3D 21

~53!

andu0 equals the Debye temperature.
Correspondingly, in the low-temperature region (T

!up ,u l ,u t or x@1) the internal energy and the specific he
become

U5f01NkF9

8 S up

u0
D 3

up1
3p4

5

1

u0
3

T4G
2

S

a2
kF p

48
~u l12u t!1

p

4
z~3!S 1

u l
2

1
2

u t
2D T3G ~54!

and

CV5Nk
12p4

5

T3

u0
3

2
S

a2
k

3p

4
z~3!S 1

u l
2

1
2

u t
2D T2. ~55!

Each expression of the thermodynamic quantities
been divided into two parts: the first part, though it is al
3-7
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influenced by the boundary, is almost the result given
Debye; the second part, which is proportional to the area
the surface, describes the boundary effect.

Moreover, similar to the case of ideal gases in annu
containers, we can easily prove that there is no contribu
coming from the term which is proportional to the area
the surface of the system if we apply periodic bound
conditions.

VII. GEOMETRY EFFECTS IN REALISTIC SYSTEMS

In this section, we shall briefly discuss the geometry
fects in realistic systems. Such effects are usually neglig
in the thermodynamic limit (V→`). The subject which will
be of most interest to us will be that of boundary effects
the thermodynamic property of the system in which the th
mal wavelength of the particle is comparable to the sys
size, e.g., mesoscopic systems or optical microcavities.

~1! Small size systemsIn statistical physics, one often use
the thermodynamic limit (V→`) as a convenient math
ematical device in macroscopic limit. The system approac
the macroscopic limit once its size is much larger than
thermal wavelength. The size of a mesoscopic system is
tween microscopic and macroscopic scale. In mesosc
systems, of course, many of the rules in macroscopic ph
ics, such as the thermodynamic limit~which neglects the
boundary effect!, may not hold. Many novel phenomena e
ist that are intrinsic to mesoscopic systems, e.g., size eff
@9#.

In realistic systems, the magnitude of boundary effect
determined by the ratiol/L, wherel is the thermal wave-
length andL denotes the linear size of the system. The th
mal wavelength depends on two factors: the temperatur
the systemT and the mass of the particle. For electrons, fro
room temperature to 10 K the thermal wavelength is in
range of about 4 nm to 24 nm. This means that in a na
system the boundary effect becomes important and canno
neglected. Furthermore, in ultralow-temperature physics,
viously, the boundary effect will become remarkable. Up
now, the lowest temperature that can be obtained in exp
ments is of the order of nK@10#. In this ultralow-temperature
scale, the wavelength of a electron is of the order of 1 m
the wavelength of a hydrogen atom is of the order of
mm; in other words, in such a case, the boundary effect
be measured in macroscale.

In the case of ideal gases confined in annular container
crystal lattices with periodic boundary conditions, howev
we have shown that every system, very large or very sm
will not show any boundary effects, that is to say, even in
small systems like torusC360 andC240 molecules, if we can
still treat such systems by the statistical method, there ar
boundary effects so long as the systems have the toro
structure. Recently, there are many studies on nanorings
pecially the metal nanorings@11#. It might be expected tha
the method and the result of ideal gases in annular contai
can be used to treat the electron gases in metal nanor
Moreover, metal wires having diameters in the range of
nometer are very important for nanoelectronics and ot
nanodevice applications, and, recently, ultrathin me
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nanowires have aroused growing interest in condens
matter physics@12#. The analysis presented above appl
equally to such systems.

Of special interest is the electron gas on a carbon na
tube. It is known that the electronic structure of a carb
nanotube can be either metallic or semiconducting, depe
ing on its diameter and chirality@13#. For the metallic case
we can treat the electrons on a nanotube as a free elec
gas on the lateral surface of a cylinder. In such a syst
along the perimeter of the transverse cross section, even
size is very small so that the energy spectrum of the electr
is discrete, there is no boundary effect~see Sec. IV!; other-
wise, along the nanotube axis the boundary effect correc
has to be reckoned in when the length of the nanotube is v
short. With the help of the method provided in Sec. III w
can calculate the thermodynamic properties of such syst
directly, e.g., the specific heat in Eq.~16!.

~2! Long and narrow systems. Simple analysis reveals tha
the effect of boundary on the observable is proportiona
L/AS, whereS is the area andL the perimeter of the system
The magnitude of the factorL/AS is determined by the ge
ometry of the system. If the shape of the system is long
narrow, in principle, the factorL/AS can take on an arbi-
trarily large value and hence the boundary effect will beco
significant even in macroscale.

~3! Blackbody radiation in small cavities. From visible
light to infrared, the range of the wavelength is from 0.4mm
to about 102 mm. This means that if the size of a system is
the order of microns, the boundary effect must be recko
in. In Sec. V we have calculated the exact solution for bla
body radiation in a three-dimensional rectangular cav
from which we can estimate the influence of the bound
effect on blackbody radiation.

From Eq.~40! we can estimate the influence of the boun
ary effect on the specific heat of a photon gas confined
small cavity by comparing the contribution from the surfa
term @the second term of Eq.~40!# with the result which is
obtained based on the thermodynamic limit@the first term of
Eq. ~40!#. For this purpose, we introduce a ratioh
5CV

S/CV
V , whereCV

S is defined as the second term andCV
V

the first term of Eq.~40!. For the linear size of the system
L51 mm and 0.1 mm, when the temperatureT5300 K, the
ratiosh are about 1% and 10%; whenT5100 K, the ratiosh
are about 3% and 30%; moreover, whenT510 K, L
51 cm, the ratioh;3%. This result shows that, relative t
the case of particles with nonzero rest masses~whose wave-
lengths are relatively short!, the boundary effect is significan
in photon systems.

~4! Systems consisting of small grains. In Sec. VI we have
discussed the boundary correction to the Debye theory of
specific heat of crystals. From Eq.~55! we can learn that a
low temperature the boundary effect will become significa
since the contribution from the boundary term is proportio
to T2, whereas the term corresponding to the Debye’s re
is proportional toT3. Therefore, the contribution from th
boundary effect will become more and more important w
a drop in temperature. Of course, the smaller the system s
the stronger is the influence of the boundary. Conside
3-8
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macroscopic system consisting of small grains. Such
granular material can be obtained, for example, by grindin
piece of crystal to a fine powder. In such a system the v
ume is almost the same as the volume before grind
whereas the total area of surface, which equals the sum o
area of all grains in the system, becomes much larger.
can rewrite the expression of the specific heat in the follo
ing form for clarity:

CV5
V

a3
A~T!2

S

a2
B~T!, ~56!

where the area of surfaceS;V2/3, A(T) andB(T) are cer-
tain functions of the temperature. If we divide the volumeV
into n cells of volumeV/n, the total volume of the system i
roughly speaking stillV ; however, the total area of surfac
becomesn(V/n)2/35A3 nV2/3. This means that the boundar
effect will become important in granular materials. It can
found that before grinding the correction to the standard
sult ~the term which is proportional toV) is on the order
a/A3 V, here we have not reckoned in the influence of te
perature though it is of equal importance, whereas a
grinding such a correction increases to the orderA3 n(a/A3 V).

~5! Geometry effects versus fluctuations. The geometry
effect may be visible for small size systems. In such syste
however, the fluctuations also may not be neglected since
total number of particlesN is not macroscopic. A natura
question that may be asked is: Can one distinguish geom
effects from the fluctuation background? Based on the res
calculated above, we can estimate in what cases the ge
etry effects will become apparent. Next we consider so
special cases as examples.

The influence of fluctuations is on the orderAN/N. In
metals, take copper as an example, 1 cm3 contains about
1023 free electrons. The ratiom0

boundary/m0
free reflects the influ-

ence of the boundary on the Fermi energy. When the lin
size of the system is 5 nm , the ratiom0

boundary/m0
free;3.3%;

however, in this case the fluctuation is only about 0.9
when the size of the system is 30 nm, the ra
m0

boundary/m0
free;0.6%, but the fluctuation is about 0.06%

This means that the magnitude of the fluctuation, though a
cannot be neglected, is sufficiently smaller than that of
boundary effect so that one can distinguish the bound
effect in nanoscale metal systems.

For photon gases with linear sizeL51 mm ~macroscale!
and temperatureT5300 K ~room temperature!, the ratioh
(5CV

S/CV
V) is about 1%, but, in this case, the fluctuation

negligibly small; for the case ofL51 cm andT510 K the
ratio h;3%, but the fluctuation is only about 0.1%. That
to say, the boundary effect can be measured in macrosc
photon systems.

~6! Geometry effects versus particle-particle interaction.
In most realistic systems, there will be interactions betwe
the particles. Next, we compare the contribution from
geometry effects with the influence of the interactions amo
the particles.

~a! Bose case. For dilute Bose gases, the weak intera
tions between particles and their low density allow for
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accurate theoretical description of the effect of partic
particle interactions based on the binary collision meth
WhenT.Tc , whereTc is the critical temperature, the equa
tion of state can be expressed as@14#

P

kT
5

1

l3
g5/2~z!2

2a

l4
g3/2

2 ~z!1•••, ~57!

wherea is the scattering length; the influence of the partic
particle interactions is described in the second term. For
ometry effects, Eq.~25! gives the equation of state for a
ideal Bose gas in confined space:

P

kT
5

1

l3
g5/2~z!2

1

4

S

Vl2
g2~z!1•••. ~58!

From this result we can estimate the contributions fro
the geometry effects and the interparticle interactio
The leading contribution from the boundary is2(1/4)S/
(Vl2)g2(z); the leading contribution from the interparticl
interaction is 2(2a/l4)g3/2

2 (z). By comparing these two
contributions, we can see that there exists a regime where
geometry effect dominates in an imperfect gas. Introduce
ratio between these two contributions,

hb5
1

8

Sl2

Va

g2~z!

g3/2
2 ~z!

, ~59!

wherea denotes the magnitude of the scattering length. T
regime in which the geometry effect becomes dominant
be determined by the conditionhb.1.

Using this result, we next compare the influence of t
geometry effects with the influence of the interparticle int
actions on Bose-Einstein condensation. We will show t
the geometry effects, compared with the interparticle int
actions, are important in some recent experiments on Bo
Einstein condensation in dilute atomic gases.

In the recent experiments on Bose-Einstein condensat
the shape of the condensate is either cigar shaped, wi
diameter about 15mm and length 300mm–5 mm, or ap-
proximately round with a diameter of 10–50mm @15,16#. As
an example, the Bose gas we considered here is nea
critical point where the fugacityz;1 and the temperature
T;Tc , and the shape of the corresponding condensat
cigarlike ~or threadlike!, in other words, the shape of th
system is long and narrow. In such a system, the total are
the surface is approximately equal to the area of the lat
surface, so we have

dmax;0.12
l2

a
, ~60!

wheredmax is the maximum size of the transverse cross s
tion of the system in which the geometry effect becom
dominant. The parameters in some recent experiments h
the following orders of magnitude@16#: For 1H, the scatter-
ing length a;0.065 nm, the thermal wavelengthl;0.25
mm, so we havedmax;0.11 mm; for 7Li, a;21.5 nm,
3-9
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l;1.2 mm, so dmax;0.12 mm; for 23Na, a;2.8 nm,
l;0.26 mm, so dmax;2.931023 mm; for 87Rb, a
;5.4 nm, l;0.45 mm, sodmax;4.331023 mm. From this
result we can see that, compared with the interparticle in
actions, the geometry effects cannot be ignored in the exp
ments on Bose-Einstein condensation of1H and 7Li. For
example, in the experiment on Bose-Einstein condensa
of atomic hydrogen the condensate is 15mm in diameter and
5 mm in length@16#, so the ratiohb;7.5, i.e., the geometry
effects are more important than the interparticle interacti
in the experiment on Bose-Einstein condensation of ato
hydrogen.

Strictly speaking, in the recent experiments on Bo
Einstein condensation the atomic gases are trapped in m
netic traps rather than boxes with hard walls. Usually, s
traps are approximately described as effective thr
dimensional harmonic wells cylindrically symmetric abo
the z axis. In the above analysis we assume that the B
gases are trapped in hard-wall tubes, i.e., for simplifying
treatment, we replace the harmonic wells by tubes, but
result, to orders of magnitude, is reliable.

~b! Fermi case. For an imperfect Fermi gas the equatio
of state is@14#

P

kT
5~2 j 11!

1

l3
f 5/2~z!22 j ~2 j 11!

a

l4
f 3/2

2 ~z!1•••,

~61!

where j is the spin of the particle. Like the treatment in th
Bose case, we can also compare the geometry effects
the interparticle interactions by comparing the second te
in Eqs.~25! and~61! directly. Next, as an example, we com
pare these two influences on the ground state of a Fe
system.

The ground-state energy for an imperfect Fermi gas
given by (j 51/2) @14,17#

E5
3

5
N

\2

2m S 3p2
N

VD 2/3

1N
\2

2m
2pa

N

V
1•••, ~62!

the contribution from the interparticle interactions describ
in the second term. The corresponding chemical potentia

m05
\2

2m S 3p2
N

VD 2/3

1
\2

2m S 4pa
N

VD5m0
free1m0

interparticle,

~63!

wherem0 is equal to the Fermi energy of the ideal Fermi g
plus the second term which describes the contribution fr
the interparticle interactions. Similarly, as expressed in
~28!, the Fermi energy containing the contribution from t
boundary can be written asm05m0

free1m0
boundary. Introduc-

ing a ratio h f5m0
boundary/m0

interparticle, we can compare the
corrections due to the geometry effects with the correcti
that emerge from the interactions among the particles. Di
calculation gives

h f5
1

16
~3p2!1/3

1

a

S

V S N

VD 22/3

. ~64!
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Taking a box of side lengthd as an example, we haveh f
5(3/8)(3p2)1/3l 2/(ad), where l 5(V/N)1/3 is the mean in-
terparticle distance. Obviously, ifh f.1, compared with the
interparticle interactions, the geometry effects will domina
in the system.h f.1 gives the condition

d

l
,1.160

l

a
. ~65!

This condition is equivalent to the requirement of low de
sities and small system sizes. That is to say, in a small di
Fermi gas, the influence of geometry effects will exceed
influence of interparticle interactions.

Furthermore, in this paper we also consider the geom
effects on photon gases and on phonon gases. The photo
can be regarded as a genuine ideal gas in statistical mec
ics since the cross section of photon-photon scattering, wh
is only a loop correction, is exceedingly small. Therefo
there is no contribution from the interparticle interaction.
the harmonic approximation, the phonon gas can also be
garded as an ideal gas. That is to say, in photon gases a
phonon gases the contributions from the geometry effects
the main corrections to the standard results.

VIII. DISCUSSIONS AND CONCLUSIONS

The key problem in statistical mechanics is to calcul
the partition function, i.e., to solve the sum over all possi
states. Often, this sum is difficult to calculate. To calcula
the partition function approximately, in the thermodynam
limit V→`, one can convert the sum to an integral by intr
ducing a state density. In so doing, however, the informat
about the system geometry has been lost because the
proximation that the spectrum is continuous has been ta
during this process. The information about the system ge
etry is embodied in the structure of the spectrum, so if
want to involve the geometry information in the thermod
namic quantities, we have to solve the sum over the st
directly. We have developed two methods to solve the s
One is an approximate method which can be used to d
with the system with an irregular boundary@4#. Another
method considered in the present paper is based on the E
MacLaurin formula; sometimes this method leads to ex
solutions. However, the prerequisite for applying the Eul
MacLaurin formula is that the spectrum is already known

The method for performing the summation by the Eul
MacLaurin formula is easy to apply to the cases of id
gases in external potentials and nonideal gases if the s
trum of the system is already known. Fortunately, the sp
trum can be obtained by using many systematic meth
exactly or approximately. We will discuss such cases in
tail elsewhere@18#.

Intrinsically the boundary effect arises from the intera
tion between the particles and the boundary. The influenc
this interaction can be embodied in boundary conditions. T
fixed-end boundary condition, like the case of a particle in
infinite depth potential, reflects the interaction between
particles and the wall of the box. However, if there is
3-10
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boundary, of course, there is no interaction between the
ticles and the boundary; in other words, there is no bound
effect. In such a case we may apply periodic boundary c
ditions, and then the boundary terms will vanish in the ex
solution.

From the results given above, we can see that the gr
potential of a system in confined space is less than tha
free space since the sign of the leading geometry term,
the second term in Eq.~20!, is negative. It means that th
existence of a boundary tends to reduce the number of s
of the system, in other words, to reduce the volume of
phase space—the set of all possible states. This is just
cause, for ideal gases, in free space the spectrum is con
ous while in confined space the spectrum gets discrete. T
the number of modes in confined space is less than tha
free space.

The boundary term which is proportional to the area
the surface is always negative~the other terms correspondin
to geometry effects are usually negligible!. A natural ques-
tion that may be asked is: What will happen when the c
tribution from the boundary effect become large enou
e.g., in the case of the size of the system is very small or
temperature is very low, so that the grand potential is l
than zero? The answer is that in such a case the statis
method is no longer valid because the grand potential is
logarithm of the grand partition function and a negati
grand potential means that the number of the states is
than one.

In conclusion, by using the Euler-MacLaurin formula, t
geometry effects on the statistical mechanics of various
tems, such as ideal Bose and Fermi gases, photon g
phonon gases, are discussed. From the exact solution
can see that the grand potential can be expressed as a s
two parts: one is just the result obtained in the thermo
namic limit V→`; another is the contribution from the ge
ometry effect. The latter consists of a series of terms: the
term, by comparing with the result given in Ref.@4#, reflects
the influence of the shape of the boundary; the second te
which is proportional to the Euler-Poincare´ characteristic
number, reflects the influence of the topological property
the system; the rest terms are always negligible and the n
ber of such terms is finite when the problem is exactly so
able, or else it may be infinite. Moreover, we discuss
validity of the approximate method for calculating the effe
of boundary and connectivity, presented in Ref.@4#, which is
based on the mathematical work given by Kac@6# and can be
used to deal with the ideal gas system with an irregu
boundary in two dimensions. We also analyze the poss
geometry effects in realistic systems. It is hoped that
geometry effects can be encountered in the regime of m
scopic scale. For photon gases, the geometry effects ma
observed even in macroscale systems. In imperfect gase
compare the geometry effects with the interparticle inter
tions and point out that there exists a regime where the
ometry effects dominate in interacting systems.
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APPENDIX: THERMODYNAMIC QUANTITIES
IN THREE-DIMENSIONAL BOXES

Following general procedures, we can obtain the therm
dynamic quantities for an ideal gas in a three-dimensio
box, although the geometry terms in Eq.~25! make the deri-
vation tedious.

The equation of state,

PV

kT
5 ln J5

V

l3
h5/2~z!2

1

4

S

l2
h2~z!

1
1

16

L

l
h3/2~z!2

1

8
h1~z!,

N5z
]

]z
ln J5

V

l3
h3/2~z!2

1

4

S

l2
h1~z!

1
1

16

L

l
h1/2~z!2

1

8
h0~z!.

Internal energy,

U

NkT

5
3

2

h5/2~z!

h3/2~z!
~11D!1

1

N F2
1

4

S

l2
h2~z!1

1

32

L

l
h3/2~z!G ,

where

D5
1

N F1

4

S

l2
h1~z!2

1

16

L

l
h1/2~z!1

1

8
h0~z!G .

Specific heat,

CV

Nk
5F15

4

h5/2~z!

h3/2~z!
2

9

4

h3/2~z!2d1

h1/2~z!2d2
G~11D!

2
1

2

1

N

S

l2 Fh2~z!2
3

4
h1~z!

h3/2~z!2d1

h1/2~z!2d2
G

1
3

64

1

N

L

l Fh3/2~z!2h1/2~z!
h3/2~z!2d1

h1/2~z!2d2
G ,

where

d15
1

6

Sl

V
h1~z!2

1

48

Ll2

V
h1/2~z!,

d25
1

4

Sl

V
h0~z!2

1

16

Ll2

V
h21/2~z!1

1

8

l3

V
h21~z!.

We also have

]z

]T
52

3

2

z

T

h3/2~z!2d1

h1/2~z!2d2
.
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